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● We have a small project, so we don't 
need that.

● To complicated.

● There is no benefit on using Branching.

● We have already a Branching strategy 
;-)

● What about conflicts?

● ....

1. Arguments against
Branching
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● Let us make an experiment:

– We assume to have a Version Control 
Tool (VCT) which does not support 
the concept of branching. 

– So we have no branches at all.

2. Without Branches
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● This means we have 
only a single line
of development.

● Let us think
in Subversion terms
„trunk“ for simplicity.

● Every developer 
has to commit on the 
same line.

2. Without Branches

Commit developer 1

trunk

Commit developer 2

Commit developer 3
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● What are the Consequences of the 
given scenario?

– The environment for every developer 
is changing by every commit.

– Code is not stabilizing
– Release time points are problematic.

● Mixture of code ready-for-
production, bug fixing and feature 
implementation.

2. Without Branches
Consequences
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● The environment for every
developer is changed 
by every commit.

– This will leading to 
a commit policy:

● Only commit if 
change has been
ready

– Prevent from commits!

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1
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● Complex relationship
between code changes
and requirement/change
management.

● This will make undoing
of any changes more or
less impossible.

● Defect analysis can be
very complex.

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1
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● Developers can not work
on a Feature/Bug parallel.

● They will not synchronize
with the repository, cause
this can break their current
work.

– They have to solve
conflicts instead of working
on Features or Bugs.

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1
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● Release Preparation:

– Stop development!
– Only Bug Fixing for

Release is allowed
– No parallel 

development possible
– Code fixes to turn off

non ready code.

2. Without Branches
Consequences

Commit developer 1

Commit developer 2

Commit developer 1
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● We made an release (REL 1.0)
and the customer is calling
that a bug has been found.

– We have to fix that
bug as soon as 
possible and deliver
a new release to the
customer.

2. When do we really
need Branches?

REL 1.0
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● If we have a VCT which does
not support the concept of
branches (independent how 
it is called) we are really in 
trouble.

Note:
RCS already supports
branching (1985!)

3. When do we really
need Branches?

REL 1.0
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● In real life we are using
Subversion ;-)
– We would create a Branch

and do the Bug fixing on it.
– This Branch is called a

Hot-Fix or Bug-Fix
Branch.

3. When do we really
need Branches?

BUGFIX

REL 1.0

REL 1.0.1
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● Why using Branching Concepts?
– Change/Defect Management
– Project/Release planning

● Test, Integration Test, Q&A

– Versions for:
● Cross compiling, Operation System, GUI 

/ Hardware.

4. Branching Concepts
Why?
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● Why using Branching Concepts?
– Get a better relationship between 

Change/Defect Management and the 
changes made to the software.

– Better informations for you and of 
course for the customers.

4. Branching Concepts
Why?
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● Why using Branching Concepts?
– Project/Release planning

● Better identification of thinks which are 
comming into a release/milestone etc.

● You can control what exactly is going 
into a particular release/milestone.

● You can control the time when it's 
integrated into the release/milestone.

4. Branching Concepts
Why?
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● Why using Branching Concepts?
– Cross compiling, Operation System, 

GUI / Hardware.
● You can create Branches for particular 

operation systems
● Hardware 
● GUI
● etc.

4. Branching Concepts
Why?
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● We create the Bug-Fix Branch 
based on the Release 1.0

5. Branching Concepts
Bug-Fix Branching

trunk

BUGFIX

RELEASE-1.0.1

RELEASE-1.0
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● Advantages:
– Development (trunk) and bug fixing 

line are separated.
– Separated deployment/delivery from 

development. So the fixed released 
can be delivered very fast to the 
customer.

5. Branching Concepts
Bug-Fix Branching
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● Disadvantages:
– The trunk is of course unstable yet.

5. Branching Concepts
Bug-Fix Branching
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● We define a point in time to start 
with the Release Branch as a 
preparation for a particular 
release (Feature Freeze).

5. Branching Concepts
Release Branching

trunk

Release 1.0

RELEASE-1.0
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● Advantages:
– Development (trunk) and release 

line are separated. There is no need 
to stop development on trunk.

– Changes on the release line only 
affecting the release not the current 
development and vice versa.

– Separated deployment/delivery from 
development.

5. Branching Concepts
Release Branching
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● Disadvantages:
– The trunk is unstable

● Mixture of Bug-Fixes / Features / 
Enhancements etc.

– No good relationship between 
Change/Defect Management on the 
release line.

– Undoing changes is not very simple.

5. Branching Concepts
Release Branching
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● Don't miss to merge the changes 
back into the development line ;-)

5. Branching Concepts
Release Branching

1 2

3
RB_RELEASE-1.0

5

10trunk

RELEASE_1.0.0

4 6
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● Create a Branch for issues for 
example Bugs, Changes etc.

5. Branching Concepts
Issue Branching I

1 2

3B_TICKET22 5

10trunk 4 6
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● Advantages:
– Exact association between Code 

changes and Change/Defect 
Management for the created 
branches

– Undoing of changes will be 
simplified on the “trunk”.

5. Branching Concepts
Issue Branching I
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● Disadvantages:
– Unstable trunk
– No good relationship to 

Change/Defect Management for the 
trunk.

5. Branching Concepts
Issue Branching I
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5. Branching Concepts
Issue Branching II

1 2

3B_TICKET22 6

7trunk

4B_TICKET23 5

8

● Changes/Bug Fixes will be made 
by Branches only.

Integration
Testing
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5. Branching Concepts
Issue Branching II

● Advantages
– Very good relationship between 

Change/Defect Management either 
on the branches and what has been 
integrated into the “trunk”.

– Analysing is simplified cause the 
problem can only occur at the 
integration point.

– Simplifies undoing of changes.
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5. Branching Concepts
Issue Branching II

● Disadvantages
– You have to be careful with code 

refactoring, cause changes in folder 
structure can be a nightmare during 
a merge.
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5. Branching Concepts
Integration/Dev Line

trunk

Integration 

Line R1.0 1 2 3

REL 1.0.0
CI/Testing

● Integration / Development Line
● The Integration line is sometimes 

called the Release line.
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5. Branching Concepts
Integration/Dev Line

● Advantages
– Separated development/deployment.
– Parallel development and release 

line.
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5. Branching Concepts
Integration/Dev Line

● Disadvantages
– Code stabilizing is not very good, 

cause you are integrating from an 
unstable code line „trunk“

– Loosing relationship to 
Change/Defect Management
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trunk

Baseline

Integration 

Line R1.0

B_1

B_2

B_3

5. Branching Concepts
Baselining

1 2 3

REL 1.0.0

Baseline

B_4

B_5

B_6

Integration 

Line R1.1

REL 1.1.0CI/Testing

● Serialized Releases

At least Unit 

Testing
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trunk

Baseline 1

Integration 

Line R1.0

B_1

B_3B_2

5. Branching Concepts
Baselining

1 32

● With reintegration into Baseline 
from time to time.
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trunk

Baseline 1

Integration 

Line R1.0

B_1

B_2

B_3

5. Branching Concepts
Baselining

1 3

Integration 

Line R1.1

2

B_4

B_5

B_6

Integration 

Line R2.0

Baseline 2
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5. Branching Concepts
Baselining

● Advantages
– Exact association between 

change/defect Management and the 
branches

– Stabilized Code line
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5. Branching Concepts
Baselining

● Disadvantages
– May be problematic if code 

refactoring is needed.
– Sometimes problems occur if 

branches depend on each other.
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5. Branching Concepts
Distributed Developm.

Remote

Integration

Local

Integration

Main

Integration

1 2 3

1 2 3

Remote

Baseline 1

Local

Baseline 1
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● Before you think about a Branching 
concept, think about a Merging 
concept instead.

– Who should do the merge?
● The developers.

6. Recipes for successful
Branching/Merging
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● What should be part of the merging 
process?

● Unit Tests
● Integration Test
● System Test
● Continuous Integration (CI) which 
is triggered by commits can be a 
good support on the integration 
lines.

6. Recipes for successful
Branching/Merging
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● Think about your branching concept 
before project start. These concepts 
are part of the project planning phase.

● Do not write your branch concept in 
stone!

● Observe your experience with your 
branching concept and......

– If it is necessary just change it!

6. Recipes for successful
Branching/Merging
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● Naming Conventions for branch 
names.

– Very important

Write it down instead of just 
thinking about it!

6. Recipes for successful
Branching/Merging
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● Naming Conventions for Branches:

– Integration Line (IL_...)
● Release number as supplemental 
(IL_RELEASE-1.0.0)

– Bug Fix Branches (BFB_...)
● Bug tracker id should appended 
(BFB_TICKET31)

6. Recipes for successful
Branching/Merging
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● Naming Conventions for Branches:

– Feature Branches (FB_...) 
(FB_TICKET66)

– If you have different tools for 
Change Management and Bug 
Tracking, add the information too.

● For example FB_CMTICKET42

6. Recipes for successful
Branching/Merging
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● In Subversion...

– Create sub folders in the branches 
directory

● integration, bugfixes, features
– May be for the tags folders is needed 

the same
● Build Tags etc.

6. Recipes for successful
Branching/Merging
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● My final Statement:

No Unit Tests No Branching!

● But the better Statement is:

No Unit Tests No Merging!

6. Recipes for successful
Branching/Merging
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● Not merged for a long time.

– This can result in many conflicts 
during a following merge.

● Reduce branch life time
● Make reintegrations from time to 
time.

● Change your Branching Concept

7. Pitfalls of Branching
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● Branch-oholic

– Branch at all costs.
● May be you have not invested 
enough effort into a 
„Branching/Merging Concept“ 
(Software Configuration Plan).

7. Pitfalls of Branching
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● [1] Brad Appleton's Streamed Lines:
Branching Patterns for Parallel Software
Development

– http://cmcrossroads.com/bradapp/acme

● [2] UCM Branching Strategies

– http://www.snuffybear.com/ucm_branch.htm

● [3] Branching and Merging Primer

– http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx

On-line Sources I

http://cmcrossroads.com/bradapp/acme
http://www.snuffybear.com/ucm_branch.htm
http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx
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● [4] Branching Strategy Questioned

– http://blogs.open.collab.net/svn/2007/11/branching-strat.html

● [5] Parallel Branching Strategies in Software
Configuration Management

– http://whitepapers.techrepublic.com.com/abstract.aspx?docid=169671

● [6] Distributed Version Control Systems:
A Not-So-Quick Guide Through

– http://www.infoq.com/articles/dvcs-guide

On-line Sources II

http://blogs.open.collab.net/svn/2007/11/branching-strat.html
http://whitepapers.techrepublic.com.com/abstract.aspx?docid=169671
http://www.infoq.com/articles/dvcs-guide
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● [7] Homepage of Subversion

– http://subversion.tigris.org

● [8] Book about Subversion

– http://www.svnbook.org

● [9] Subversion Forum

– http://www.svnforum.org

● [10] German Subversion forum

– http://forum.subversionbuch.de

On-line Sources III

http://subversion.tigris.org/
http://www.svnbook.org/
http://www.svnforum.org/
http://forum.subversionbuch.de/
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● [11] Forum for Software Configuration
  Management

– http://www.xing.com/net/skm

● [12] The SKM Wiki (german)

– http://www.skmwiki.de

On-line Sources II

http://www.xing.com/net/skm
http://www.skmwiki.de/
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subconf2008@soebes.com

● Thank you for your attention.

Questions?


