
Web Site:

www.soebes.com

Blog:

blog.soebes.com

Email:

info@soebes.com Dipl.Ing.(FH) Karl Heinz Marbaise

Branching Strategies

Usage of Branching Strategies

within Software Development

www.soebes.com 2(c) 2008 SoEBeS

1.Arguments against Branching
2.Without Branches
3.When do we really need Branches?
4.Why Branching Concepts?
5.Branching Concepts
6.Recipes for successful

Branching/Merging
7.Pitfalls of Branching

Agenda

www.soebes.com 3(c) 2008 SoEBeS

● We have a small project, so we don't
need that.

● To complicated.

● There is no benefit on using Branching.

● We have already a Branching strategy
;-)

● What about conflicts?

●

1. Arguments against
Branching

www.soebes.com 4(c) 2008 SoEBeS

● Let us make an experiment:

– We assume to have a Version Control
Tool (VCT) which does not support
the concept of branching.

– So we have no branches at all.

2. Without Branches

www.soebes.com 5(c) 2008 SoEBeS

● This means we have
only a single line
of development.

● Let us think
in Subversion terms
„trunk“ for simplicity.

● Every developer
has to commit on the
same line.

2. Without Branches

Commit developer 1

trunk

Commit developer 2

Commit developer 3

www.soebes.com 6(c) 2008 SoEBeS

● What are the Consequences of the
given scenario?

– The environment for every developer
is changing by every commit.

– Code is not stabilizing
– Release time points are problematic.

● Mixture of code ready-for-
production, bug fixing and feature
implementation.

2. Without Branches
Consequences

www.soebes.com 7(c) 2008 SoEBeS

● The environment for every
developer is changed
by every commit.

– This will leading to
a commit policy:

● Only commit if
change has been
ready

– Prevent from commits!

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1

www.soebes.com 8(c) 2008 SoEBeS

● Complex relationship
between code changes
and requirement/change
management.

● This will make undoing
of any changes more or
less impossible.

● Defect analysis can be
very complex.

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1

www.soebes.com 9(c) 2008 SoEBeS

● Developers can not work
on a Feature/Bug parallel.

● They will not synchronize
with the repository, cause
this can break their current
work.

– They have to solve
conflicts instead of working
on Features or Bugs.

2. Without Branches
Consequences

BugFix 1

Feature 3

Feature 1

Feature 1

BugFix 1

www.soebes.com 10(c) 2008 SoEBeS

● Release Preparation:

– Stop development!
– Only Bug Fixing for

Release is allowed
– No parallel

development possible
– Code fixes to turn off

non ready code.

2. Without Branches
Consequences

Commit developer 1

Commit developer 2

Commit developer 1

www.soebes.com 11(c) 2008 SoEBeS

● We made an release (REL 1.0)
and the customer is calling
that a bug has been found.

– We have to fix that
bug as soon as
possible and deliver
a new release to the
customer.

2. When do we really
need Branches?

REL 1.0

www.soebes.com 12(c) 2008 SoEBeS

● If we have a VCT which does
not support the concept of
branches (independent how
it is called) we are really in
trouble.

Note:
RCS already supports
branching (1985!)

3. When do we really
need Branches?

REL 1.0

www.soebes.com 13(c) 2008 SoEBeS

● In real life we are using
Subversion ;-)
– We would create a Branch

and do the Bug fixing on it.
– This Branch is called a

Hot-Fix or Bug-Fix
Branch.

3. When do we really
need Branches?

BUGFIX

REL 1.0

REL 1.0.1

www.soebes.com 14(c) 2008 SoEBeS

● Why using Branching Concepts?
– Change/Defect Management
– Project/Release planning

● Test, Integration Test, Q&A

– Versions for:
● Cross compiling, Operation System, GUI

/ Hardware.

4. Branching Concepts
Why?

www.soebes.com 15(c) 2008 SoEBeS

● Why using Branching Concepts?
– Get a better relationship between

Change/Defect Management and the
changes made to the software.

– Better informations for you and of
course for the customers.

4. Branching Concepts
Why?

www.soebes.com 16(c) 2008 SoEBeS

● Why using Branching Concepts?
– Project/Release planning

● Better identification of thinks which are
comming into a release/milestone etc.

● You can control what exactly is going
into a particular release/milestone.

● You can control the time when it's
integrated into the release/milestone.

4. Branching Concepts
Why?

www.soebes.com 17(c) 2008 SoEBeS

● Why using Branching Concepts?
– Cross compiling, Operation System,

GUI / Hardware.
● You can create Branches for particular

operation systems
● Hardware
● GUI
● etc.

4. Branching Concepts
Why?

www.soebes.com 18(c) 2008 SoEBeS

● We create the Bug-Fix Branch
based on the Release 1.0

5. Branching Concepts
Bug-Fix Branching

trunk

BUGFIX

RELEASE-1.0.1

RELEASE-1.0

www.soebes.com 19(c) 2008 SoEBeS

● Advantages:
– Development (trunk) and bug fixing

line are separated.
– Separated deployment/delivery from

development. So the fixed released
can be delivered very fast to the
customer.

5. Branching Concepts
Bug-Fix Branching

www.soebes.com 20(c) 2008 SoEBeS

● Disadvantages:
– The trunk is of course unstable yet.

5. Branching Concepts
Bug-Fix Branching

www.soebes.com 21(c) 2008 SoEBeS

● We define a point in time to start
with the Release Branch as a
preparation for a particular
release (Feature Freeze).

5. Branching Concepts
Release Branching

trunk

Release 1.0

RELEASE-1.0

www.soebes.com 22(c) 2008 SoEBeS

● Advantages:
– Development (trunk) and release

line are separated. There is no need
to stop development on trunk.

– Changes on the release line only
affecting the release not the current
development and vice versa.

– Separated deployment/delivery from
development.

5. Branching Concepts
Release Branching

www.soebes.com 23(c) 2008 SoEBeS

● Disadvantages:
– The trunk is unstable

● Mixture of Bug-Fixes / Features /
Enhancements etc.

– No good relationship between
Change/Defect Management on the
release line.

– Undoing changes is not very simple.

5. Branching Concepts
Release Branching

www.soebes.com 24(c) 2008 SoEBeS

● Don't miss to merge the changes
back into the development line ;-)

5. Branching Concepts
Release Branching

1 2

3
RB_RELEASE-1.0

5

10trunk

RELEASE_1.0.0

4 6

www.soebes.com 25(c) 2008 SoEBeS

● Create a Branch for issues for
example Bugs, Changes etc.

5. Branching Concepts
Issue Branching I

1 2

3B_TICKET22 5

10trunk 4 6

www.soebes.com 26(c) 2008 SoEBeS

● Advantages:
– Exact association between Code

changes and Change/Defect
Management for the created
branches

– Undoing of changes will be
simplified on the “trunk”.

5. Branching Concepts
Issue Branching I

www.soebes.com 27(c) 2008 SoEBeS

● Disadvantages:
– Unstable trunk
– No good relationship to

Change/Defect Management for the
trunk.

5. Branching Concepts
Issue Branching I

www.soebes.com 28(c) 2008 SoEBeS

5. Branching Concepts
Issue Branching II

1 2

3B_TICKET22 6

7trunk

4B_TICKET23 5

8

● Changes/Bug Fixes will be made
by Branches only.

Integration
Testing

www.soebes.com 29(c) 2008 SoEBeS

5. Branching Concepts
Issue Branching II

● Advantages
– Very good relationship between

Change/Defect Management either
on the branches and what has been
integrated into the “trunk”.

– Analysing is simplified cause the
problem can only occur at the
integration point.

– Simplifies undoing of changes.

www.soebes.com 30(c) 2008 SoEBeS

5. Branching Concepts
Issue Branching II

● Disadvantages
– You have to be careful with code

refactoring, cause changes in folder
structure can be a nightmare during
a merge.

www.soebes.com 31(c) 2008 SoEBeS

5. Branching Concepts
Integration/Dev Line

trunk

Integration

Line R1.0 1 2 3

REL 1.0.0
CI/Testing

● Integration / Development Line
● The Integration line is sometimes

called the Release line.

www.soebes.com 32(c) 2008 SoEBeS

5. Branching Concepts
Integration/Dev Line

● Advantages
– Separated development/deployment.
– Parallel development and release

line.

www.soebes.com 33(c) 2008 SoEBeS

5. Branching Concepts
Integration/Dev Line

● Disadvantages
– Code stabilizing is not very good,

cause you are integrating from an
unstable code line „trunk“

– Loosing relationship to
Change/Defect Management

www.soebes.com 34(c) 2008 SoEBeS

trunk

Baseline

Integration

Line R1.0

B_1

B_2

B_3

5. Branching Concepts
Baselining

1 2 3

REL 1.0.0

Baseline

B_4

B_5

B_6

Integration

Line R1.1

REL 1.1.0CI/Testing

● Serialized Releases

At least Unit

Testing

www.soebes.com 35(c) 2008 SoEBeS

trunk

Baseline 1

Integration

Line R1.0

B_1

B_3B_2

5. Branching Concepts
Baselining

1 32

● With reintegration into Baseline
from time to time.

www.soebes.com 36(c) 2008 SoEBeS

trunk

Baseline 1

Integration

Line R1.0

B_1

B_2

B_3

5. Branching Concepts
Baselining

1 3

Integration

Line R1.1

2

B_4

B_5

B_6

Integration

Line R2.0

Baseline 2

www.soebes.com 37(c) 2008 SoEBeS

5. Branching Concepts
Baselining

● Advantages
– Exact association between

change/defect Management and the
branches

– Stabilized Code line

www.soebes.com 38(c) 2008 SoEBeS

5. Branching Concepts
Baselining

● Disadvantages
– May be problematic if code

refactoring is needed.
– Sometimes problems occur if

branches depend on each other.

www.soebes.com 39(c) 2008 SoEBeS

5. Branching Concepts
Distributed Developm.

Remote

Integration

Local

Integration

Main

Integration

1 2 3

1 2 3

Remote

Baseline 1

Local

Baseline 1

www.soebes.com 40(c) 2008 SoEBeS

● Before you think about a Branching
concept, think about a Merging
concept instead.

– Who should do the merge?
● The developers.

6. Recipes for successful
Branching/Merging

www.soebes.com 41(c) 2008 SoEBeS

● What should be part of the merging
process?

● Unit Tests
● Integration Test
● System Test
● Continuous Integration (CI) which
is triggered by commits can be a
good support on the integration
lines.

6. Recipes for successful
Branching/Merging

www.soebes.com 42(c) 2008 SoEBeS

● Think about your branching concept
before project start. These concepts
are part of the project planning phase.

● Do not write your branch concept in
stone!

● Observe your experience with your
branching concept and......

– If it is necessary just change it!

6. Recipes for successful
Branching/Merging

www.soebes.com 43(c) 2008 SoEBeS

● Naming Conventions for branch
names.

– Very important

Write it down instead of just
thinking about it!

6. Recipes for successful
Branching/Merging

www.soebes.com 44(c) 2008 SoEBeS

● Naming Conventions for Branches:

– Integration Line (IL_...)
● Release number as supplemental
(IL_RELEASE-1.0.0)

– Bug Fix Branches (BFB_...)
● Bug tracker id should appended
(BFB_TICKET31)

6. Recipes for successful
Branching/Merging

www.soebes.com 45(c) 2008 SoEBeS

● Naming Conventions for Branches:

– Feature Branches (FB_...)
(FB_TICKET66)

– If you have different tools for
Change Management and Bug
Tracking, add the information too.

● For example FB_CMTICKET42

6. Recipes for successful
Branching/Merging

www.soebes.com 46(c) 2008 SoEBeS

● In Subversion...

– Create sub folders in the branches
directory

● integration, bugfixes, features
– May be for the tags folders is needed

the same
● Build Tags etc.

6. Recipes for successful
Branching/Merging

www.soebes.com 47(c) 2008 SoEBeS

● My final Statement:

No Unit Tests No Branching!

● But the better Statement is:

No Unit Tests No Merging!

6. Recipes for successful
Branching/Merging

www.soebes.com 48(c) 2008 SoEBeS

● Not merged for a long time.

– This can result in many conflicts
during a following merge.

● Reduce branch life time
● Make reintegrations from time to
time.

● Change your Branching Concept

7. Pitfalls of Branching

www.soebes.com 49(c) 2008 SoEBeS

● Branch-oholic

– Branch at all costs.
● May be you have not invested
enough effort into a
„Branching/Merging Concept“
(Software Configuration Plan).

7. Pitfalls of Branching

www.soebes.com 50(c) 2008 SoEBeS

● [1] Brad Appleton's Streamed Lines:
Branching Patterns for Parallel Software
Development

– http://cmcrossroads.com/bradapp/acme

● [2] UCM Branching Strategies

– http://www.snuffybear.com/ucm_branch.htm

● [3] Branching and Merging Primer

– http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx

On-line Sources I

http://cmcrossroads.com/bradapp/acme
http://www.snuffybear.com/ucm_branch.htm
http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx

www.soebes.com 51(c) 2008 SoEBeS

● [4] Branching Strategy Questioned

– http://blogs.open.collab.net/svn/2007/11/branching-strat.html

● [5] Parallel Branching Strategies in Software
Configuration Management

– http://whitepapers.techrepublic.com.com/abstract.aspx?docid=169671

● [6] Distributed Version Control Systems:
A Not-So-Quick Guide Through

– http://www.infoq.com/articles/dvcs-guide

On-line Sources II

http://blogs.open.collab.net/svn/2007/11/branching-strat.html
http://whitepapers.techrepublic.com.com/abstract.aspx?docid=169671
http://www.infoq.com/articles/dvcs-guide

www.soebes.com 52(c) 2008 SoEBeS

● [7] Homepage of Subversion

– http://subversion.tigris.org

● [8] Book about Subversion

– http://www.svnbook.org

● [9] Subversion Forum

– http://www.svnforum.org

● [10] German Subversion forum

– http://forum.subversionbuch.de

On-line Sources III

http://subversion.tigris.org/
http://www.svnbook.org/
http://www.svnforum.org/
http://forum.subversionbuch.de/

www.soebes.com 53(c) 2008 SoEBeS

● [11] Forum for Software Configuration
 Management

– http://www.xing.com/net/skm

● [12] The SKM Wiki (german)

– http://www.skmwiki.de

On-line Sources II

http://www.xing.com/net/skm
http://www.skmwiki.de/

www.soebes.com 54(c) 2008 SoEBeS

subconf2008@soebes.com

● Thank you for your attention.

Questions?

