SoftwareEntwicklung » Beratung » Schulung

Branching Strategies

Usage of Branching Strategies
within Software Development

1.Arguments against Branching
2.Without Branches

3.When do we really need Branches?
4 Why Branching Concepts?
5.Branching Concepts

6.Recipes for successtul
Branching/Merging

7.Pitfalls of Branching

 We have a small project, so we don't
need that.

« To complicated.

« There is no benefit on using Branching.
« We have already a Branching strateqgy

;=)

« What about conflicts?

 Let us make an experiment:

- We assume to have a Version Control
Tool (VCT) which does not support
the concept of branching.

- So we have no branches at all.

trunk

 This means we have
only a single line
of development.

e Let us think
in Subversion terms
y,trunk” for simplicity.

Commit developer 1

Commit developer 2

Commit developer 3

« Every developer
has to commit on the
same line.

2. Without Branches
Consequences

« What are the Consequences of the
given scenario?

- The environment for every developer
1s changing by every commit.

- Code is not stabilizing

- Release time points are problematic.

e Mixture of code ready-for-
production, bug fixing and feature
implementation.

(c) 2008 SoEBeS www.soebes.com

 The environment for every
developer is changed
by every commit.

Feature 1

BugFix 1

Feature 3

- This will leading to
a commit policy:

Feature 1

BugFix 1

e Only commit if
change has been
ready

- Prevent from commits!

2. Without Branches
Consequences

« Complex relationship

Feature 1

between code changes

BugFix 1

and requirement/change
management Feature 3

Feature 1

e This will make undoing

of any changes more or BugFix 1

less impossible.

« Defect analysis can be
very complex.

(c) 2008 SoEBeS www.soebes.com

2. Without Branches
Consequences

 Developers can not work

Feature 1

on a Feature/Bug parallel.

BugFix 1

« They will not synchronize

Feature 3

with the repository, cause
this can break their current

Feature 1

Work. BugFiX 1

- They have to solve
conflicts instead of working
on Features or Bugs.

(c) 2008 SoEBeS www.soebes.com

 Release Preparation:

- StOp deve]opment' Commit developer 1

- On].y Bug F]_X]_I]_g fOI" Commit developer 2
Release is allowed . mit developer 1

- No parallel
development possible

- Code fixes to turn off
non ready code.

« We made an release (REL 1.0)
and the customer is calling
that a bug has been found.

- We have to fix that REL 1.0
bug as soon as
possible and deliver
a new release to the
customer.

« If we have a VCT which does
not support the concept of
branches (independent how
it is called) we are really in ;.. |,
trouble.

Note:
RCS already supports
branching (1985!)

 In real life we are using
Subversion ;-)

- We would create a Branch
and do the Bug fixing on it.

- This Branch is called a | BUGFIX
Hot-Fix or Bug-Fix
Branch.

REL 1.0

REL 1.0.1 y

« Why using Branching Concepts?

- Change/Defect Management

- Project/Release planning
» Test, Integration Test, Q&A
- Versions for:

* Cross compiling, Operation System, GUI
/ Hardware.

4. Branching Concepts
Why?

« Why using Branching Concepts?

- Get a better relationship between
Change/Defect Management and the
changes made to the software.

- Better informations for you and of
course for the customers.

(c) 2008 SoEBeS www.soebes.com

15

4. Branching Concepts
Why?

« Why using Branching Concepts?

- Project/Release planning

» Better identification of thinks which are
comming into a release/milestone etc.

* You can control what exactly is going
into a particular release/milestone.

 You can control the time when it's
integrated into the release/milestone.

(c) 2008 SoEBeS www.soebes.com

16

« Why using Branching Concepts?

- Cross compiling, Operation System,
GUI / Hardware.

* You can create Branches for particular
operation systems

e Hardware

« GUI
e efc.

 We create the Bug-Fix Branch
based on the Release 1.0

J RELEASE-1.0.1

RELEASE-I.OV BUGFIX
-

trunk

5. Branching Concepts
Bug-Fix Branching

 Advantages:

- Development (trunk) and bug fixing
line are separated.

- Separated deployment/delivery from
development. So the fixed released
can be delivered very fast to the
customer.

(c) 2008 SoEBeS www.soebes.com

19

* Disadvantages:

- The trunk is of course unstable yet.

5. Branching Concepts
Release Branching

 We define a point in time to start
with the Release Branch as a
preparation for a particular
release (Feature Freeze).

J RELEASE-1.0
/ Release 1.0
>

trunk

(c) 2008 SoEBeS www.soebes.com 21

5. Branching Concepts
Release Branching

 Advantages:

- Development (trunk) and release
line are separated. There is no need
to stop development on trunk.

- Changes on the release line only
affecting the release not the current
development and vice versa.

- Separated deployment/delivery from
development.

(c) 2008 SoEBeS www.soebes.com 22

5. Branching Concepts
Release Branching

* Disadvantages:

- The trunk is unstable

« Mixture of Bug-Fixes / Features /
Enhancements etc.

- No good relationship between
Change/Defect Management on the
release line.

- Undoing changes is not very simple.

(c) 2008 SoEBeS www.soebes.com

23

 Don't miss to merge the changes
back into the development line ;-)

RELEASE 1.0.0

RB_RELEASE-1.0

trunk

e Create a Branch for issues for
example Bugs, Changes etc.

B TICKET22

trunk

5. Branching Concepts
Issue Branching I

 Advantages:

- Exact association between Code
changes and Change/Defect
Management for the created
branches

- Undoing of changes will be
simplified on the “trunk”.

(c) 2008 SoEBeS www.soebes.com

26

* Disadvantages:
- Unstable trunk

- No good relationship to
Change/Detfect Management for the
trunk.

 Changes/Bug Fixes will be made
by Branches only.

Integration
B TICKET23

Testing

B TICKET22

5. Branching Concepts
Issue Branching II

 Advantages

- Very good relationship between
Change/Detfect Management either
on the branches and what has been
integrated into the “trunk”.

- Analysing is simplified cause the
problem can only occur at the
integration point.

- Simplifies undoing of changes.

(c) 2008 SoEBeS www.soebes.com

29

« Disadvantages

- You have to be careful with code
refactoring, cause changes in folder
structure can be a nightmare during
a merge.

» Integration / Development Line

 The Integration line is sometimes
called the Release line.,

Cl/Testing

Integration
Line R1.0

trunk

« Advantages

- Separated development/deployment.

- Parallel development and release
line.

5. Branching Concepts
Integration/Dev Line

« Disadvantages

- Code stabilizing is not very good,
cause you are integrating from an
unstable code line , trunk”

- Loosing relationship to
Change/Detftect Management

(c) 2008 SoEBeS www.soebes.com

33

« Serialized Releases

ClI/Testing REL 1.0.0 RFL 1.1.0
Integration Integration
Line R1.0 Line R1.1

|

Baseline Baseline
At least Unit
Testing

trunk

 With reintegration into Baseline
from time to time.

Integration

Line R1.0 ,

B1 \J

Baseline 1
trunk

Integration ‘

Line R1.1

Integration Integration
Line R1.0 Line R2.0

A

Baseline 2

Baseline 1

trunk

« Advantages

- Exact association between
change/defect Management and the
branches

- Stabilized Code line

« Disadvantages

- May be problematic if code
refactoring is needed.

- Sometimes problems occur if
branches depend on each other.

Remote
Baseline 1
Remote
Integration
Main
Integration
Local
Integration
Local
Baseline 1

« Before you think about a Branching
concept, think about a Merging
concept instead.

- Who should do the merge?
« The developers.

6. Recipes for successtul
Branching/Merging

 What should be part of the merging
process?

» Unit Tests
» Integration Test
e System Test

e Continuous Integration (CI) which
is triggered by commits can be a
good support on the integration
lines.

(c) 2008 SoEBeS www.soebes.com

41

6. Recipes for successtul
Branching/Merging

« Think about your branching concept
before project start. These concepts
are part of the project planning phase.

« Do not write your branch concept in
stone!

« Observe your experience with your
branching concept and......

- If it is necessary just change it!

(c) 2008 SoEBeS www.soebes.com 42

 Naming Conventions for branch
names.

- Very important

Write it down instead of just
thinking about it!

6. Recipes for successtul
Branching/Merging

 Naming Conventions for Branches:

- Integration Line (IL ...)

 Release number as supplemental
(IL RELEASE-1.0.0)

- Bug Fix Branches (BFB ...)

* Bug tracker id should appended
(BFB TICKET31)

(c) 2008 SoEBeS www.soebes.com

44

6. Recipes for successtul
Branching/Merging

 Naming Conventions for Branches:

- Feature Branches (FB ...)
(FB TICKET606)

- If you have ditferent tools for
Change Management and Bug
Tracking, add the information too.

« For example FB CMTICKET42

(c) 2008 SoEBeS www.soebes.com

45

6. Recipes for successtul
Branching/Merging

e In Subversion...

- Create sub folders in the branches
directory

» integration, bugftixes, teatures

- May be for the tags folders is needed
the same

e Build Tags etc.

(c) 2008 SoEBeS www.soebes.com

46

6. Recipes for successtul
Branching/Merging

My final Statement:

No Unit Tests No Branching!

e But the better Statement is:

No Unit Tests No Merging!

(c) 2008 SoEBeS www.soebes.com

47

 Not merged for a long time.

- This can result in many conflicts
during a following merge.

e Reduce branch life time

 Make reintegrations from time to
time.

 Change your Branching Concept

e Branch-oholic

- Branch at all costs.

« May be you have not invested
enough effort into a
,Branching/Merging Concept”
(Software Configuration Plan).

« [1]Brad Appleton's Streamed Lines:
Branching Patterns for Parallel Software
Development

- http://cmcrossroads.com/bradapp/acme
« [2] UCM Branching Strategies

- http://www.snuffybear.com/ucm branch.htm
« [3] Branching and Merging Primer

- http://msdn.microsoft.com/en-us/library/aa7308

http://cmcrossroads.com/bradapp/acme
http://www.snuffybear.com/ucm_branch.htm
http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx

« [4] Branching Strategy Questioned

- http://blogs.open.collab.net/svn/2007/11/branck

« [5] Parallel Branching Strategies in Software
Configuration Management

- http://whitepapers.techrepublic.com.com/abstr:

« [6] Distributed Version Control Systems:
A Not-So-Quick Guide Through

- http://www.infoq.com/articles/dvcs-guide

http://blogs.open.collab.net/svn/2007/11/branching-strat.html
http://whitepapers.techrepublic.com.com/abstract.aspx?docid=169671
http://www.infoq.com/articles/dvcs-guide

[7] Homepage of Subversion

- http://subversion.tigris.org

[8] Book about Subversion

- http://www.svnbook.org

[9] Subversion Forum

- http://www.svnforum.org

[10] German Subversion forum

- http://forum.subversionbuch.de

http://subversion.tigris.org/
http://www.svnbook.org/
http://www.svnforum.org/
http://forum.subversionbuch.de/

« [11] Forum for Software Configuration
Management

- http://www.xing.com/net/skm
« [12] The SKM Wiki (german)

- http://www.skmwiki.de

http://www.xing.com/net/skm
http://www.skmwiki.de/

subconf2008@soebes.com

 Thank you for your attention.

